Photons in Nuclear Structure and Nuclear Astrophysics - some Examples

- The photoresponse of atomic nuclei
- The Pygmy Dipole Resonance
- Synthesis of heavy proton rich nuclei

Andreas Zilges Institut für Kernphysik TU Darmstadt

The photoresponse of atomic nuclei

Considerable E1 strength is predicted around the neutron threshold

- F. lachello, Physics Letters B 160 (1985) 1
- P. van Isacker, Phys. Rev. C 45 (1992) R13
- G. Colò et al., Physics Letters B 485 (2000) 362
- D. Vretenar, P. Ring et al., Physics Letters B 487 (2000) 334

E1 Excitations around the Particle Threshold

- Nuclear structure phenomenon Fundamental E1 mode below the GDR
- Importance for understanding of exotic nuclei
 E1 strength will be shifted to lower energies in neutron rich systems
- Impact on nucleosynthesis Gamow window for photo-induced reactions in explosive stellar events

Electric Dipole Strength in Nuclei

- Two Phonon Excitation: $E_x \sim 3$ MeV, B(E1) $\sim 10^{-2}$ W.u.
- Giant Dipole Resonance: $E_x \sim 18$ MeV, B(E1) ~ 10 W.u.
- Pygmy Dipole Resonance ?

E1 excitations in exotic nuclei

A few % of the EWSR found around 10 MeV

Impact on Nucleosynthesis

(n, γ) / (γ ,n) equilibrium

P. Mohr et al., Phys. Lett. B 488 (2000) 127

Experimental tools

<u>Real</u> and <u>virtual</u> photons can be used for excitation!

Photon Scattering (Nuclear Resonance Fluorescence – NRF)

Review: U. Kneissl, H.H. Pitz, and A.Z., Prog. Part. Nucl. Phys. 37 (1996) 349

Radiator and Collimator at the S-DALINAC

Photon scattering off ¹³⁸Ba

A. Z. et al., Phys. Lett. B 542 (2002) 43

E1 strength distribution in N=82 nuclei

A. Z. et al., Phys. Lett. B 542 (2002) 43

E1 strength distribution in Ca isotopes

T. Hartmann et al., Phys. Rev. Lett. **93** (2004) 192501, Phys. Rev. C **65** (2002) 034301, Phys. Rev. Lett. **85** (2000) 274

E1 strength distribution in nuclei

E1 strength distribution in N=82 nuclei

Neutron/proton "skin" excitations

Oscillations of a neutron or proton rich periphery vs. the core leads to electric dipole excitations

$\Sigma B(E1)$ should scale with N/Z ratio !

see e.g.: J. Chambers et al., Phys. Rev. C **50** (1994) R2671 P. van Isacker et al., Phys. Rev. C **45** (1992) R13

E1 strength below 9 MeV in N=82 nuclei

A. Z. et al., Phys. Lett. B **542** (2002) 43, and S. Volz et al., to be published

Models generating E1 strength around the neutron threshold

<u>Relativistic RPA</u>

D. Vretenar, A. Wandelt, P. Ring, P. Talk this morning D. Vretenar, N. Paar, P. Ring et al., Phys. Rev. C 65 (2002) 021301

• Quasiparticle Phonon Model (QPM), QRPA

V. Ponomarev, J. Wambach et al., Phys. Rev. Lett. **89** (2002) 241 N. Tsoneva, H. Lenske, Ch. Stoyanov, Phys. Lett. B **586** (2004) 213

• <u>QRPA with complex on Wednesday</u> S

<mark>G. Colò,</mark> P.F. Bortignon et al., Phys. Lett. B **485** (2000) 362 T. Hartmann, E. Litvinova et al., Phys. Rev. Lett. **93** (2004) 192501

• Local Isospin Resonances

F. lachello, Phys. Lett. B 160 (1985) 1

F. lachello, priv. com. 2004

Summary

- An E1 resonance exhausting up to 1% of the EWSR is observed in all examined nuclei around about 7 MeV
- We do not know the complete systematics, the isospin character, the decay pattern and the form factor of these states
- More resonance like strength is found above the particle threshold in n-rich systems
- We do not understand the connection between the strength below and above the threshold and the strength in stable and exotic nuclei

Outlook

- Systematic strength measurements [(γ, γ') and (γ, n) @ S-DALINAC and at GSI]
- Isospin character, branching ratios
 - [($\alpha, \alpha' \gamma$) @ KVI]
- Branching ratios, parities
 - [$(\vec{\gamma}, \gamma')$ @ HI γ S, Duke University]
- Form Factors

[(e,e') @ S-DALINAC]

Improved model calculations

[Predictive power, applications in nuclear astrophysics]

(γ,n) cross section measurements – Determination of E1 strength in the tail of the GDR

High Resolution Photon Tagger @ S-DALINAC

- "Clam Shell" magnet design
- scintillating fibres for electron detection
- energy resolution < 0.25 % for 8 MeV < E_{γ} < 16 MeV

→ talk by Jens Hasper on Sunday morning

The new ISOSPIN-Meter at KVI

Ge detector array for measurement of γ decays

European Supernova Detector for detection of α particles, $\Delta E \sim 100-200 \text{ keV}$

This setup allows to investigate the isospin character of bound states !

D. Savran, H.J. Wörtche, M. Harakeh, K. Ramspeck, A. van den Berg, A.Z.

The new ISOSPIN setup at KVI

Total photopeak efficency: ~0.1% at 9 MeV

Investigation of E1 strength in ⁵⁸Ni

D. Savran, H.J. Wörtche, M. Harakeh, K. Ramspeck, A. van den Berg, A.Z.

Investigation of E1 strength in ⁴⁸Ca

D. Savran, H.J. Wörtche, M. Harakeh, K. Ramspeck, A. van den Berg, A.Z.

Investigation of E1 strength in ⁴⁸Ca

D. Savran, H.J. Wörtche, M. Harakeh, K. Ramspeck, A. van den Berg, A.Z.

Investigation of E1 strength in ⁴⁸Ca

Why are photons important to understand the synthesis of heavy nuclei ?

CRAB NEBULA, CHANDRA 04/2001

Origin of the photons

Temperatures up to 3x10⁹ K ~ 200 keV

The photon density – a Planck distribution

p-process reaction network around A~190

Nearly no reaction rates are experimentally known!

Simulation of a Planck spectrum

Photodissociation at S-DALINAC

(1) Photon flux ~10⁶ γ / (keV s cm²) N_{γ} calibration with ¹¹B(γ , γ '), activate target

(2) Photon flux ~10⁸ γ / (keV s cm²) N_{γ} calibration with ¹⁹⁷Au(γ ,n), activate target

Abundance of p-nuclei: model vs. experiment

M. Arnould and S. Goriely, Phys. Rep. 384 (2003) 1

Activation spectrum of ^{nat}Pt

K. Vogt et al., Phys. Rev. C 63 (2001) 055802

Activation spectrum of ^{nat}Hg

K. Sonnabend et al., Phys. Rev. C 70 (2004) 035802

Groundstate reaction rates

Kern	S _n (MeV)	λ _{exp} (s ⁻¹)	λ _{NONS} (S ⁻¹)	λ _{MOST} (s ⁻¹)
¹⁹⁰ Pt	8911	0.4(2)*	0.18	0.29
¹⁹² Pt	8676	0.5(2)	0.58	0.56
¹⁹⁸ Pt	7557	87(21)	50	110
¹⁹⁷ Au	8071	6.2(8)	4.81	5.6
¹⁹⁶ Hg	8840	0.42(7)*	0.32	0.58
¹⁹⁸ Hg	7103	2.0(3)	1.36	2.1
²⁰⁴ Hg	7495	57(21)	73.3	170
²⁰⁴ Pb	8394	1.9(3)	1.53	3.0

Temperature: T=2.5x10⁹ K

T. Rauscher and F.-K. Thielemann, ADNDT <u>75</u> (2000) 1

S. Goriely, priv. comm.

Summary

- The photoresponse around the n-threshold is important for the synthesis of p-rich nuclei
- The Planck photon bath can be simulated with bremsstrahlung
- The new photon tagger @ S-DALINAC will enable direct measurements of (γ,n) rates (contribution by J. Hasper on Sunday)
- Coulomb dissociation measurements on radioactive nuclei in inverse kinematics have been performed at GSI Darmstadt (S. Müller et al.)

Photons in Nuclear Structure and Nuclear Astrophysics

M. Babilon, W. Bayer, D. Galaviz, J. Hasper, T. Hartmann, L. Kern, K. Lindenberg, S. Müller, K. Ramspeck, D. Savran, K. Sonnabend, S. Volz, M. Zarza

(Institut für Kernphysik, TU Darmstadt)

Supported by **DFG** (SFB 634 and Zi 510/2-2)

More information and references: www.zilges.de

