Die Wechselwirkung zwischen Photonen und Atomkern: Kernstruktur und Nukleosynthese

Andreas Zilges Institut für Kernphysik TU Darmstadt

CRAB NEBULA, CHANDRA 04/2001 Die Wechselwirkung zwischen Photonen und Atomkern: Kernstruktur und Nukleosynthese

- Nukleosynthese schwerer Kerne
- Photoresponse von Atomkernen
- EM Sonden und die Pygmydipolresonanz
- Ergänzende Experimente mit Hadronen
- Ausblick

Synthese schwerer Atomkerne

Synthese schwerer Atomkerne

(n,γ) ↔(γ,n)-Gleichgewicht

Kernreaktionen und Zerfälle im p-Prozess

Pb 188 25,5 s	Pb 189 51 s	Pb 190 1,2 m	Pb 191 22m 1Am	Pb 192 3,5 m	Pb 193	Pb 194 12,0 m	Pb 195	Pb 196 36,4 m	Pb 197	Pb 198 2.40 h	Pb 199	Pb 200 21,5 h	Pb 201	Pb 202	Pb 203	Pb 204
ς: p* α 5.960 γ 165: 758 α	* α 5,72 γ 271 1107 ≠ → m	e. β* e 5,577 γ 942; 142; 151; g	4 × 287 712. π.5.23 d14	c: 9* a 5,112 y 1195; 906; 168; g	5 3 202 6 348, y 368, 716, 871, 7 y	c u 4,64 > 592: 1619; 204g	8.2° 4 1.354 4.334; 278; 882 233; 11 9	ν γ 253; 502 867; 192 9	61 1 202 1 202 1 19 20 Mil: 19 20 Mil: 19 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20	* γ 290; 365, 175 9	4-132 	* > 140: 257 208: 285	1 3* 5 33* 381. 381. 346.	H- 381, 422 1574 9480, 1 460 390, 10 (1252)	H- 525, 4 17272 821 431	1×235; 915; 375 ± 0,75
TI 187	TI 188	TI 189	TI 190	TI 191	TI 192	TI 193	TI 194	TI 195 36s 1,13h	TI 196	TI 197 2,84 h	TI 198 1.87 + 5.3 h	TI 199 7,42 h	TI 200 26,1 h	TI 201 73,1 h	TI 202 12,23 d	TI 203 29,524
1: a 5.35 y 162, 127 152, 0 9	р ⁴ у 402: 552: 554	y 216: L S18: 1 334 E23 342. g 1	p ⁺ 42 t y-416: 27.5,7 625 y 418 731 525	1776 625 285 3389	4: (1 ⁴ 	(γ, r	ni Tor.	γ 884	1 429 230 530 530 5279 1 829 1 438 911 985 1	B+ Value	612 pt., 612 pt., 667., 9412, 67.66.6.6 67.67.67.67.67.67.67.67.67.67.67.67.67.6	e 5 455: 208; 247: 158 9	6 β ⁺⁺ × 368: 1206; 579: 828	× → 167; 135	× → 440; (520)	e tt
Hg 186 1,4 m	Hg 187	Hg 188 3 1 m	Hg 189 8.7 m 7.7 m	Hg 190 20,0 m	Hg 191 50.8 m ~ 50 m	4,9 h	11.1 h/ 25h	Hg 194 520 a	Hg 195 40h 9,5	Hg 196 0,15	Hg 197	Hg 198 9,97	Hg 199 42,6 m 16 87	Hg 200 23,10	Hg 201 13,18	Hg 202 29,86
*: 0 = 5.098 = 112; 252; 192: 228	10,07 a 1557 a 5.04	c 4,0 567 90 11 5	1.321: 7" 72.992; +733; 425 246 71 4	142; 172	р ¹ 1 (91) (.91) 575 (* γ 275, 157, 307	- 498 078, 1- 130, 1 14 14 14 14 14 14 14 14 14 14 14 14 14	4 30.7	7.9 552 9782 88. 51. 1 9	a 110 - 3000	A	 < C,017 + 2 	n 158 374. 47 2110	n < 60	ur < 60	#50 ·
Au 18 4,2 m	(γ, p)	A 187	AU S	Au 189 4.6m 28,3 m	Au 190 12,8 m	ALI 191 1s 3.18 h	Au 192 5,0 h	Au 193	Au 194 38,0 h	Au 100 30,5 s 100,1 d	Au 196	Au 197 7,73 s 102	Au 198 230 d 2,6943 d	Au 199 3,139 d	AU 200	Au 201 26,4 m
x: 3' 5 5,059 9 310: 243; 332	y 192; 298; 765: 416	2 (1322) 2 (1312) 2 (1312) 1 (1312) 1 (1312) 1 (1312)	295 (506		β 3.4. > 298, 30 598.	1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	ρ ⁺ 2,5. γ 317; 296 612	H 258. 1 185 07 258. 4 258. 11 4	9* 1,5 9 338; 264; 1469	1) 502 5 ⁷ 6 ⁷ 6	1 1 12 148; 201 222 168; 6 415.	1+275 9	1+212 p* 12 se 14. 183 y412. 224. #5020	87 0,3; 0,5 9 158; 208 9 30	1 () -388 69 138 378 58 128 -381 121	p 1.3. 7543: 517. 813: 167
Pt 184 17.3 m	Pt 185	h 120 20h	Pt 2,3	,)	Pt 189 11 h	21 190 0.01	Pt 191 2,8 d	Pt 192 0,79	Pt 193 4,33 d - 30 n	Pt 194 32,9	Pt 195	Pt 196 25,3	Pt 197 94,4m 18,3 h	Pt 198 7.2	Pl 199 13,6 s 50.8 m	Pt 200 12,5 h
α α 4,50 γ 106; 192; 548; 731	40 3 4944 7 8 9 2300 3 4944 7 108 3 480 157 341	c a 4,23 y 689; 612 m	* • 106: 202; 110; 285: 706	s. 8,92 y 188, 195; 382, 424.	- 721 a06 589 243: 545	6,5 α 3,17 σ 150	99; *** 0.		1y (128) 1 ⁴ 1 ⁴ 1 ⁵ 1 ⁵	e: 0,1 + 1,1	h: 22; 1561. 4 ²¹ : 123	ır 0.045 + 0.55	1-326. 27. σ ⁻ 1.77 β ⁻ 1.7 β ⁻ 1.7 180. π 5 ⁻ 0	σ 0.027 − 4 0	(+ 362) (5 - 17) (5 - 362) (5 - 17) (5 - 362) (6 - 16) (6 - 16)	11 0.8: 0.7 y 78: 136: 244: 90: 227 97: 0
Ir 183 55 m	Ir 184 3,0 h	lr 185	Ir 186	Ir 187 10,5 h	Ir 188 41,5 h	13,3 d	Ir 190 3.16 1.26 11.84	Ir 191 4,916 37,3	Ir 192 211a 1/4 m 10,00 d	Ir 193 10,53 d 12.7	Ir 194 171 d 19,15 h	Ir 195 38h 2,5h	Ir 196 1,40 h 52 s	lr 197 8,9 m 5.8 m	lr 198 8 s	
γ (980); 229 86; 200 m; g	с p ⁺ 2.9 у 264; 120 360	β+		* 7 018; 427; 401; 611	8 ¹ 7 155, 2215; 633, 478.	y 245 70:58 9. m	THE PARTY OF	h 129	1334 b 38 c 1334 c 1310 c 1334 c 1310 c 1334 c 1330 c 1330 c 1330 c 1334 c 1330 c 13300 c 1330 c 13300 c 1330 c 1330 c 1330 c 1330 c 1330 c 13	ty (83) 4 - 125	рт (17.2,2). + 12%; у 462 (254). 561) 1500	10. 1,1 10. 1,1 1300 410 +95 505 502 911 11.5 70 0	6 15 8 33 384 001 -360 332 467 778 462 667 383	(* 24)* × 470; 431; 816	0 ^{4.0} γ507; 407	
Os 182 22,1 h	Os 183 89h 13,0h	0,02	Os 185 94 d	s 186 \.58	Os 187 1.6	Os 188 13,3	Os 189	Os 190 8.9m 25.4	Os 191 13,10 h 15,4 d	Os 192	Os 193 30,11 h	Os 194 6,0 a	Os 195 6.5 m	Os 196 34,9 m		
n 510; 180, 263: 56 M	102 94. 108 9382 108 114 108 114 108 118	ii 3000	c 1 646; 875 880; 717	α 2,76 α - 80	σ 200	σ - 5	is (84) a = -0	5 538 917) 301) 187) 197	γ174) μ ^{= 0,1} σ ⁼ σ ⁼ 230	226, 458, 322, 485 + 21.	β ⁻¹ , 1 189: 460; 739 π40	μ= 0,1 942 9	р 2 9	β 0.8 5 408; 128 9		122
Re 181 20 h	Re 182	Re 183 71 d	Re 184	Re 185 37,40	Re 186 2 · 10 ⁵ a 39,25 h	Re 187 62,60	Re 188 18,8 m 16,98 h	Re 189 24,3 h	Re 190	Re 191 9,8 m	Re 192 16 s					
(9366; 361; 639	+ 738 105% + 336; 5591 - 66; 1058 - 1155; 00 1555	v 5 182: 46; 292; 209: 110: 99 9	1982 1982 1750 111; 275, 285 121 1995	ir 0.54 + 114	1,5% 42 82 157.	5 - 10 ¹⁰ а в 0.00% по у н 2.6 + 72	H-84 5-21 106	ο 1.0 γ217:219; 245 φ.m	y -12, y 18 y 177 y 187 y 197, 598 588, 525, 482, y 1	371,9	ВТ + 4 9 467; 761; 205 Я	118		120		
W 180 0,13	W 181 121,2 d	W 182 26,3	W 183	W 184 30,67	W 185 1,67 m 76.1 d	W 186 28,6	W 187 23,72 h	W 188 69 d	W 189 11 m	W 190 30,0 m						
	* v (5) c	~ 20	11 108 121 281 281, cr 10, p	» 0,002 + 2,0	h 60; (07 0,4. 112; (155) 174 0,0		β 0.6; 1,3 5 666; 480, 72 π70	р 0.3. ү(291-227_) 9	p= 2.5 y 258; 417; 650	0 1.0 7 158; 162 9						

Kernphysikalische Größen im p-Prozess-Netzwerk

Grundzustandsmassen

- Eigenschaften angeregter Zustände
- Zustandsdichten
- Photoresponse (γ , γ '), (γ ,n), (γ ,α), (γ ,p)
- Optische Potenziale

Häufigkeit von p-Kernen: Modell vs. Experiment

M. Arnould and S. Goriely, Phys. Rep. 384 (2003) 1

Woher kommen die hochenergetischen Photonen ?

CASSIOPEIA A, CHANDRA 01/2000

Temperaturen bis zu 10¹⁰ K ~ 800 keV

Ultra High Energy Cosmic Rays ? (E. Khan, Astropart. Phys. 23 (2005) 191)

Planck-Spektrum bei 2.5x10⁹ Kelvin

Die Photoresponse von Atomkernen – E1-Stärke

- Dipolriesenresonanz: $E_x \sim 18$ MeV, B(E1) ~ 10 W.u.
- Zwei-Phononen-Anregung: $E_x \sim 3$ MeV, B(E1) $\sim 10^{-2}$ W.u.
- Pygmydipolresonanz ?
 - F. lachello, PLB 160 (1985) 1
 - G. Colò et al., PLB 485 (2000) 362
 - D. Vretenar et al., PLB 487 (2000) 334
 - N. Tsoneva, H. Lenske et al., PLB 586 (2004) 273

Untersuchung mit elektromagnetischen Sonden

Es können reelle und virtuelle Photonen genutzt werden!

stabile Kerne

stabile und radioaktive Kerne

Erzeugung reeller Photonen

Review: U. Kneissl, H.H. Pitz, and A.Z., Prog. Part. Nucl. Phys. 37 (1996) 349

2.) Laser Compton Backscattering

T. Carman et al., NIM A 378 (1996) 1

Photonenstreuung an ¹³⁸Ba

Review: U. Kneissl, N.Pietralla, and A. Zilges, J. Phys. G 32 (2006) R1

(γ,γ'): E1-Stärke in stabilen N=82-Kernen

(γ,γ'): E1-Stärke unterhalb von 9 MeV

S. Volz, N. Tsoneva et al. Nucl. Phys. A 779 (2006) 1

Oberhalb der Teilchenschwelle: (γ,n) an stabilen Kernen

S. Müller et al., Phys. Rev. C 73 (2006) 025804

Erzeugung virtueller Photonen

Oberhalb der Teilchenschwelle: E1-Stärke in exotischen Kernen

P. Adrich et al., Phys. Rev. Lett. 95 (2005) 132501

Virtuelle Photonen

Ergebnisse der Experimente mit Photonen

- In stabilen Kernen beobachtet man um 6 MeV resonanzartige E1-Stärke unbekannter Struktur mit ΣB(E1) ~ 1% der IV-EWSR
- In neutronenreichen Kernen beobachtet man zusätzliche Stärke im "Tail" der GDR
- Zusammenhang zwischen der Stärke unterhalb und oberhalb der Schwelle unklar
- Zusammenhang zwischen der Stärke in stabilen und exotischen Kernen unklar

Was sagen die Modellrechnungen?

QPM-Rechnungen für die summierte Stärke

QPM-Rechnungen für ¹³⁸Ba

V. Ponomarev and J. Wambach, priv. comm.

QPM-Rechnungen für ¹³⁸Ba

Um diese Struktureigenschaft zu testen sind elektromagnetische Sondenalleine nicht ausreichend !

Untersuchung der PDR mit \alpha-Streuung

European Supernova Detector zur Messung von α -Teilchen, $\Delta E \sim 30-200 \text{ keV}$

(γ , γ ') versus (α , α ')

* 140 MeV und Vorwärtswinkelstreuung

Untersuchung der PDR mit α -Streuung

Ge Detektor-Array zur Messung der γ–Zerfälle European Supernova Detector zur Messung von α -Teilchen, $\Delta E \sim 30-200 \text{ keV}$

Dieser Aufbau kombiniert die Isospin-Selektivität und Oberflächen-Sensitivität von α -Streuung mit der Spin-Selektivität und Energieauflösung von γ -Spektroskopie

D. Savran et al., NIM A 564 (2006) 267

Der ISOSPIN-Setup am KVI

BE

Totale Photopeak-Effizienz: ~0.1% at 9 MeV

2D-Energie-Matrix: (α , α ' γ) an ¹⁴⁰Ce

($\alpha, \alpha' \gamma$) an ¹⁴⁰Ce - Selektivität

D. Savran et al., Phys. Rev. Lett. 97 (2006) 172502

E1-Stärke in ¹⁴⁰Ce: $(\alpha, \alpha' \gamma)$ vs. (γ, γ')

Aufspaltung der PDR in ¹⁴⁰Ce

E1-Stärke gefaltet mit einer Lorentz-Verteilung, Γ = 300 keV

($\alpha, \alpha' \gamma$) an ¹³⁸Ba: Erste Ergebnisse

KVI Groningen, November 2006

Ausblick

Stabile Kerne:

- Erweiterung der Systematik in (γ,γ') und (γ,n)-Aktivierungsexperimenten am S-DALINAC
- Fortsetzung der (α,α'γ)- und (p,p'γ)-Experimente am KVI Groningen und RCNP Osaka
- Direkte Messung von (γ,x)-Wirkungsquerschnitten mit dem Taggersystem NEPTUN am S-DALINAC

Messung der Photoresponse oberhalb der Teilchenschwelle mit NEPTUN

NiederEnergiePhotonenTaggerUN @ S-DALINAC

Hochauflösende Messung (Δ E/E<0.25 %) photoneninduzierter Reaktionsraten im Energiebereich 8 MeV < E_{γ} < 20 MeV

NEPTUN am S-DALINAC

NEPTUN: Teil der Fokalebene

NEPTUN am S-DALINAC

NEPTUN am S-DALINAC

NEPTUN erlaubt die <u>hochauflösende</u> Messung photoinduzierter Wirkungsquerschnitte im Energiebereich von $E\gamma = 8-20$ MeV.

Ausblick

Stabile Kerne:

- Erweiterung der Systematik in (γ,γ')- und Aktivierungsexperimenten am S-DALINAC
- Fortsetzung der (α,α'γ)- und (p,p'γ)-Experimente am KVI Groningen und RCNP Osaka
- Direkte Messung von (γ,x)-Wirkungsquerschnitten mit dem Taggersystem NEPTUN am S-DALINAC

Radioaktive Kerne:

- Messung von (γ,x)-Wirkungsquerschnitten in inverser Kinematik (T. Aumann, H. Emling, K. Sümmerer et al.)
- (α , α ') und (p,p') in inverser Kinematik (EXL)

Die Wechselwirkung zwischen Photonen und Atomkern: Kernstruktur und Nukleosynthese

M. Elvers, J. Endres, M. Fritzsche, D. Galaviz^{*}, J. Hasper, L. Kern, K. Lindenberg, S. Müller, <u>D. Savran</u>, C. Siegel, <u>K. Sonnabend</u>, S. Volz

(Institut für Kernphysik, TU Darmstadt)

T. Rauscher (Basel), N. Tsoneva, H. Lenske (Gießen), M. Harakeh, A. van den Berg, H. Wörtche (KVI Groningen), S. Kamerdzhiev, E. Litvinova (Obninsk)

Unterstützt durch die **DFG** (SFB 634 und Zi 510/2-2), das BMBF (06 DA 115) und den DAAD (247211).

Weitere Informationen: www.zilges.de

*now at MSU