

IOP Annual Nuclear Physics Conference ● University of Liverpool ● March 2016

IOP Annual Nuclear Physics Conference ● University of Liverpool ● March 2016

Photonuclear Reactions

Dipole photoresponse of atomic nuclei

Photons in the universe

Photons in the universe

Photonuclear Reactions

- pure EM interaction
- spin selectivity (mainly E1, M1, E2 transitions)
- strength selectivity
- For E_γ < S_n and S_p:
 derivation of excitation energies, spins,
 parities, decay energies, level widths,
 lifetimes, decay branchings, multipole
 mixing ratios, absolute transition strengths
 completely model independently

NRF using bremsstrahlung

NRF using monoenergetic photons

Laser Compton Backscattering (LCB)

- "monoenergetic" photon spectrum
- tunable energy
- polarized beam

→ Nuclear Photonics

NRF using monoenergetic photons

Parity determination by measuring asymmetries

NRF using monoenergetic photons

Krishichayan et al., Phys. Rev. C 91, 044328 (2015)

The Extreme Light Infrastructure – Nuclear Physics

- High power laser system, 2 x 10 PW maximum power
 Thales Optronique SA and SC Thales System Romania
- High intensity gamma beam system GBS,
 0-20 MeV beam from laser Compton backscattering
 European Consortium EuroGammaS led by INFN Rome,
 subcontractors include STFC (UK)
- Eight experimental areas for laser, gamma, gamma&laser

Total investment 2013-2018: > 300 M€ (230 M£) (mainly European Regional Development Fund)

Civil construction

33000 m² total:

- experimental areas
- guest house
- office spaces

The photon beam at ELI-NP

- very high intensity > $10^4 \gamma/(s \cdot eV)$ (HIGS: $10^2 \gamma/(s \cdot eV)$)
- narrow bandwidth down to 0.5% (HIGS: 3%)
- small beam diameter in mm range (HIGS: cm range)
- high degree of polarization > 99% (HIGS: > 99%)
- low duty factor of 100 Hz (HIGS: MHz)

ELIADE: ELI-NP Array of DEtectors

Discovery frontiers for NRF at ELI-NP

Availability frontier

(access to rare isotopes)

Sensitivity frontier

(weak channels)

Precision frontier

(high statistics)

Physics cases at ELI-NP: Examples

• constraints on **neutrinoless double-beta decay** matrix elements: A novel decay channel of the scissors mode

Constraints on neutrinoless double-beta decay matrix elements: Decay channels of the scissors mode

D. Savran, T. Aumann, and A. Zilges, Prog. Part. Nucl Phys. 70 (2013) 210

Constraints on neutrinoless double-beta decay matrix elements: Decay channels of the scissors mode

Branching ratios of the 1⁺ scissors mode are sensitive to parameters in certain nuclear structure models (e.g., IBM-2 Hamiltonian)

 \rightarrow constrain nuclear matrix element in $0\nu\beta\beta$ transition rate

$$\lambda_{0\nu\beta\beta} = G_{0\nu} \left| M^{(0\nu)} \right|^2 \left(\frac{\langle m_{\nu} \rangle}{m_e} \right)^2$$

(see talks by Ben Kay, Stuart Szwec, Jonathan Entwisle)

Constraints on neutrinoless double-beta decay matrix elements: Decay channels of the scissors mode

- **ELI-NP:** narrow bandwidth allows selective excitation and detection of weak decay channels
 - polarization allows to distinguish 1⁺ and 1⁻ states

Physics cases at ELI-NP: Examples

- constraints on **neutrinoless double-beta decay** matrix elements: A novel decay channel of the scissors mode
- parity violation in nuclear excitations: The case of ²⁰Ne

Parity violation in nuclear excitations: The case of ²⁰Ne

Study level mixing in 1+/1- parity doublets

→ constrain weak meson-nucleon coupling

 $V_{PNC} \equiv$ parity non-conserving interaction (about 1 eV)

Parity violation in nuclear excitations

ELI-NP:

- nearly 100% polarized γ beam
- thick ²⁰Ne absorber in front of target removes photons to excite broad 1⁺ state, because $\sigma(1^+) \approx 30 \cdot \sigma(1^-)$
- only 1⁻ state of doublet is excited by remaining photons
- measure M1 admixture to E1 excitation by analyzing NRF events in detector perpendicular to beam axis

Physics cases at ELI-NP: Examples

- constraints on **neutrinoless double-beta decay** matrix elements: A novel decay channel of the scissors mode
- parity violation in nuclear excitations: The case of ²⁰Ne
- an access to the equation of state and to neutron-rich matter: Investigation of the Pygmy Dipole Resonance

An access to the equation of state and to neutron-rich matter: The Pygmy Dipole Resonance

D. Savran, T. Aumann, and A. Zilges, Prog. Part. Nucl Phys. 70 (2013) 210

An access to the equation of state and to neutron-rich matter: The Pygmy Dipole Resonance

Neutron skin oscillates against neutron/proton core

- → electric dipole mode (E1) around 5-10 MeV
- → impact on nucleosynthesis, EOS, neutron skin (see talk by Dan Watts)

ELI-NP:

- narrow bandwidth allows single state excitation
 - → measure, e.g., branching ratios to excited states
- high intensity and small beam diameter
 - → study E1 distribution in rare isotopes

Physics cases at ELI-NP: Examples

- constraints on **neutrinoless double-beta decay** matrix elements: A novel decay channel of the scissors mode
- parity violation in nuclear excitations: The case of ²⁰Ne
- an access to the equation of state and to neutron-rich matter: Investigation of the Pygmy Dipole Resonance
- proton-neutron symmetry breaking: Rotational 2⁺
 states of the nuclear scissors mode
- the **origin of matter**: Studies of the photoresponse of low-abundant *p* nuclei
- photons and radioactive isotopes: Electric and magnetic dipole response of unstable nuclei

Applications of photonics at ELI-NP

HEU Grand Challenge

Medical Imaging
low density & isotope specific

Waste Imaging & Assay non-invasive content certification

NUCLEAR PHOTONICS — opportunities for photonuclear reactions at the ELI-NP facility

- D. Balabanski, J. Beller, B. Boisdeffre, V. Buznea, F. Camera,
- M. Cernaianu, V. Derya, <u>D. Filipescu</u>, I. Kojouharov, B. Löher,
 - C. Matei, C. Mihai, G. Pascovici, C. Petcu, N. Pietralla,
- C. Romig, D. Savran, <u>G. Suliman</u>, P. Thirolf, E. Udup, <u>C.A. Ur</u>, H. Utsunomiya, V. Werner, N.V. Zamfir, A.Z.

Bucharest

Cologne

Darmstadt

Kobe

Milano

Munich