Nukleare Astrophysik mit Photonen

FZ Rossendorf, 14.01.2005

Andreas Zilges Institut für Kernphysik TU Darmstadt

CRAB NEBULA, CHANDRA 04/2001

Nukleare Astrophysik mit Photonen

- Synthese schwerer Atomkerne
- "Direkte" Experimente zur Nukleosynthese
 - Photodissoziation im p-Prozess
 - Neutroneneinfang radioaktiver Kerne
- Grenzen der "direkten" Experimente
- Beispiele für indirekte Experimente
 - Messung der Photoresponse von Atomkernen
 - Isospincharakter der E1-Anregungen
- Ausblick

Synthese schwerer Atomkerne

Pb 188	Pb 169	Pb 190	Pb 191	Pb 192	Pb 193	Pb 194	Pb 195	Pb 196	Pb 197	Pb 198	Pb 199	Pb 200	Pb 201	Pb 202	Pb 203	Pb 204
C. ()*	010	C.B ⁺	2,2 m 1,4 m	C 8 ⁺	5,0 m 4,9 m	C ARI	10,0 m - 10 m	50,411	43 m 43 m 71 (10) 285 7	2.40 1	12,2 m 1,3 n 1+12 + (f) A - 207	21,31	61 S 0.4 D	1511/ 525-15*8 1-361. 422	e'se 01'au	67,2 m 1,4
γ 165; 758 Ø	γ 271 1107 ≠ → m	y 942; 142; 151; g	712: 0.5.23 614., γ.927., π ε.⇒g	> 1195: 908; 168; g	776. 97365. 776. 611 7 9	> 592: 1619; 204g	1,354 9,334; 578; 882 753; 11 g	867; 132 9	17 17. (199) 17 18. (199) 18 18. (199) 18 18 (199)	175 9	2-14, (187 201) 790	× 140; 257 208; 268	4 23" 361. 361. 346.	1874 19.485 8.4. 10.5 285	H- 525, 1 (272) 821 431.	1×3%; 912; 375 ± 0/%
TI 187	TI 188	TI 189	TI 190	TI 191	TI 192	TI 193	TI 194	TI 195	TI 196	TI 197	TI 198	TI 199	TI 200	TI 201	TI 202	TI 203
18 # 45 s	1,2 m 1,2 m	1/4 m 2/3 m ? 4(1) ² 1/2(b) 1	3,7 m 2,6 m	5,4 m ? 4,5 ⁺ 9208	10,8 m 9,6 m	2,1 m 22.6 m	32,8 m 33 m	3.6 s 1,13 h	1.4h 1,8h	2,84 h	1,87 th 5,3 h	· 42 h	28.1.0		12 23 0	29,524
y 168. 9230 162 - 127 1220 9	1402: 1 552: 3* 556., 5403.,	518 123 y 1	9416; 515,7 625 (1415 721., 525,	55 285 3854	+ 423 (1-52) 658: 1113 757 201	- 252 1245 346; 1230 598; 5 p	1422 * 23% (1) ¹ 749. 7498.	1865 1864 1864	639 + 430 930 - 911. 17 279 - 985 -	5 428; 152 S	687 9412. 19282 675 107 - 627	247: g	-Pro	zes	S 520. 1	er 11
Hg 186 1,4 m	Hg 187	Hg 188 3,25 m	Hg 189 8.7 m 7,7 m	Hg 190 20,0 m	Hg 191	Hg 192 4,9 h	Hg 193	Hg 194 520 a	Hg 195	Hg 196 0,15	Hg 197	H(9,97	42,6 m 16.87	23,10	201	Hg 202 29,86
*: 0 ⁺ o 5.098 v 112; 252;	10,07 1501 0104	c u 4,61 567; 190	4:27 (3:32): 27 72:392; 3:732 425 3:6	v 143; 172:	8" 7 1980: 1,983) 575 - 1980	* 7,275, 157,	- 438 - 438 - 130. ; 258		1127.0 57.6 % 1.551 9788. 558. 61		h 124 1771 1771 18		3 153 374.			
Au 185	Au 186	Au 187	Au 188	Au 189	Au 190	Au 191	Au 192	Au 193	Au 194	Au 195	Au 196	Au 197	Au 198	Au 199	Au 200	Au 201
4,2 m	10,7 m	2,3 5 8,4 m	8,8 m	4.6 m 28,3 m	42,8 m	1 9 3.18 h	5,0 h	3,9 a 17.65 h	38,0 h	30,5 a 100,1 d	8,7h 8,2s 8,2d	7,73 6 103	2,3. 1 2,6943 d	3,139 d	18,7 h 48,4 m	26,4 m
5 5,059 y 310: 243; 332	a 4,653 y 192; 259; 765; 416	γ (101) 4 ⁻ 515	β ⁺ > 295, 340; 605	4 - 713 6 - 815; 7 - 107 - 648; 380	β* 3.4 5 298; 302 598.	ly 2005; 2005; 5747; 24° 284	p ⁺ 2,5. 7 317; 298 612	H 258. 1 188 0° 258. 4 258. 11 2	9* 1.5 9 320; 264; 1466	15 552 5 ⁷ 4 ⁷ 5	1 1 1 148; 281 222 168. 6 425.	19275 9 198	97 14. 183 44.2. 254. 19230	γ 158; 208 9 9 30	3 13 5 5 28. - 388 89 138. 578 38 125 - 383 135	р. 1.3. 7.543; 517 813: 167
Pt 184 17.3 m	Pt 185	Pt 186 2,0 h	Pt 187 2,35 h	Pt 188 10,2 d	Pt 189 11 h	PI 190 0.01	Pt 191 2,8 d	Pt 192 0,79	Pt 193	Pt 194 32,9	Pt 195	Pt 196 25,3	Pt 197	Pt 198 7.2	Pl 199 13,6 s 30.8 m	Pt 200 12,5 h
6 6 4,50 7 106; 192;	41 5 4944 7 4 9 2001 5 4946 7 108 3 480	с а 4,23 ү 689; 612	* 7 106: 202;	n 8,92 y 188, 195;	721.006	6,5 · 10" a	\$ 539; 409 360.		Hy (128)		1×28		6- 241. 6 ⁻¹ 171 171 171 171 181		1-362 (F-17) 1-362 (F-16) 35 (F-17) 1-363	β= 0,8; 0,7 γ 78; 136; 244; 80; 227
Ir 183	Ir 184	Ir 185	Ir 186	Ir 187	Ir 188	Ir 189	s lr 190	lr 191	ir 192	Jr 193	r 194	Ir 195	Ir 196	Ir 197	r 10R	9_0
55 m	3,0 h	14,4 h	1,9 h 16,64 h	10,5 h	41,5 h	13,3 d	3.1 h 1.2 h 11,8 d	4,94 8 37,5	2116 1.4 m 1800 d	10/6 1 02.7	17, 1 19,15 h	28h 2,5h	1,40 h 52 s	8,9 m 5.8 m	8 8	
y 383; 229 88; 203 m; g	β ⁺ 2.9 √ 264; 120; 360	c γ 264; 1829; 60; 97; 1958	- 17; 1718. 197 (267 625 117; 1- 115.	* y 918; 427; 401: 611	8 ¹ y 155, 2215; 833, 478.	y 245 70: 59. g. m	THE REAL PROPERTY OF	1129	7 1554 C 1514 7 F 455. 7 1 1/3/2 7500.1	Hy(80) - 125	6" - 12% 7.402 - 12% 531 1200	1). 1,1 , 190 410 + 56 900 502. 911 145 72 0	F 15 4133 , 394 201; - 363 232 467 778 462 647 363	(*24)r > 470; 431; 816	p=4.0 y507; 407	
Os 182 22.1 h	Os 183	Os 184	Os 185	Os 186	Os 187	Os 188	Os 189	Os 190	Os 191	Os 192	Os 193	Os 194	Os 195	Os 196		
510; 180.	1.184 Jan			2,0 - 10			6 H 19,		101 11 1010	ο,1 6 1γ 583 208,	β ⁻¹ ,1	B=0,1	0.5 11	8-08		122
263.58 M	709A 2017(1.0" 156.	ii 3000	√ 646; 875. 880; 717	$\frac{\alpha}{\alpha} = \frac{2,76}{80}$	æ 200	<i>π</i> − 5	is (31) = 0.00077 6 = -10	301. 301. 187.	γ(04) (1 φ ⁺ φ ⁺ 260	433. 372. 435 21.	73. 0 #40	a 9	β-2 9	9 408; 128. 9		
Re 181 20 h	Re 182	Re 183	Re 184	Re 185 37.40	Re 186	Re 187 62.60	Re 188	Re 189 24.3 h	Re 190	Re 191 9.8 m	Re 192					
	17 AF +77 115 1 - 229; 521: (4)	* 5 182: 46; 292;	100.4 - 200 - 200 - 200		1.58 2.4	5 - 10 ¹⁰ a	H-15 1 11	g 1.0 y217:219;	p ⁺ -12. p ⁺ 18 by 197 1387 y 197 448		BT - 4 9 467; 761;	118		120		
y 306, 361; 639	105 413: 00. 423:	209, 110; 99 9	271 255 121 9000	ii 0.54 + 114	415 82 127.	р 0.0096 по у н 2.6 + 72	106 5 152 0 358	246. g.m	1985 EZ. ARA. 5	3= 1,9	206 . R					
W 180 0,13	W 181 121,2 d	W 182 26,3	W 183	W 184 30,67	W 185	W 186 28,6	W 187 23,72 h	W 188 69 d	W 189 11 m	W 190 30,0 m						
<i>τ</i> −1	* *(5)	- 20	5 108 92 93 48. m 10,5	» 0,002 + 2,0	1,60; 070,4. 102; +(185) 174. r - 0,0		β ⁺⁺ 0.6; 1,3 5 686; 480, 72 #70	р 0.3. ү(291: 227) 9	p= 2.5 y.258; 417; 550	9 1.9 7 158; 162 9						

Schon alles bekannt im s-Prozess ?

Die Verzweigung wird bestimmt durch:

- die Halbwertszeit von ¹⁸⁵W unter stellaren Bedingungen;
- die Neutronendichte und Temperatur im s-Prozess;
- den Neutronen-Einfangquerschnitt von ¹⁸⁵W.

Synthese schwerer Atomkerne

(n, γ) \leftrightarrow (γ ,n)-Gleichgewicht

Synthese von p-Kernen: Reaktions-Netzwerk

Synthese von p-Kernen: Modell vs. Experiment

M. Arnould and S. Goriely, Phys. Rep. 384 (2003) 1

Synthese von p-Kernen: Status

"This review demonstrates that the relatively small number of papers devoted to the p-process clearly does not do justice to the astrophysics and nuclear physics richness of this mechanism"

M. Arnould and S. Goriely, Phys. Rep. 384 (2003) 1

"Direkte" Messungen I: Bestimmung von (γ,n)-Reaktionsraten im p-Prozess

Herkunft der Photonen im p-Prozess

CASSIOPEIA A, CHANDRA 01/2000

Temperaturen bis zu 10¹⁰ K ~ 800 keV

Planck-Spektrum bei 2.5x10⁹ Kelvin

Relevanter Energiebereich für (*γ*,**n)-Reaktionen**

Konkurrierende (γ , α)-Reaktionen im p-Prozess

Branching point beim p-Prozess : $\lambda_{(\gamma,n)} \sim \lambda_{(\gamma,\alpha)}$

Methode I: Erzeugung eines Planck-Spektrums

- 1.) Erzeugung eines Planck-Spektrums im relevanten Energiebereich
- 2.) Bestrahlung des Target-Isotops
- 3.) Direkte Messung der energieintegrierten (γ,n) oder (γ,α) Grundzustands-Reaktionsrate

Keine Annahmen über Verlauf des Wirkungsquerschnitts nötig !

Aber Messungen bei mehreren Photonen-Endpunktsenergien erforderlich !

Methode II: Normierung des Wirkungsquerschnitts

- 1.) Erzeugung eines beliebigen Photonenspektrums
- 2.) Bestrahlung des Target-Isotops
- 3.) Annahme über Verlauf des WQ
- 4.) Messung der Reaktionsrate
- 5.) Normierung des (γ ,n)- oder (γ , α)-WQ

Nur eine Messung nötig!

Aber Annahme über den Verlauf des Wirkungsquerschnitts erforderlich !

Methode I: Erzeugung eines Planck-Spektrums

Radiator und Kollimator am S-DALINAC

Methode I: Erzeugung eines Planck-Spektrums

Bestrahlung des Target-Isotops

Aktivierungsspektrum von ^{nat}Pt

K. Vogt et al., Phys. Rev. C 63 (2001) 055802

Aktivierungsspektrum von ^{nat}Hg

K. Sonnabend et al., Phys. Rev. C 70 (2004) 035802

Grundzustands-Reaktionsraten

Kern	S _n (MeV)	λ _{exp} (s ⁻¹)	λ _{NONS} (S ⁻¹)	λ _{MOST} (s ⁻¹)
¹⁹⁰ Pt	8911	0.4(2)*	0.18	0.29
¹⁹² Pt	8676	0.5(2)	0.58	0.56
¹⁹⁸ Pt	7557	87(21)	50	110
¹⁹⁷ Au	8071	6.2(8)	4.81	5.6
¹⁹⁶ Hg	8840	0.42(7)*	0.32	0.58
¹⁹⁸ Hg	7103	2.0(3)	1.36	2.1
²⁰⁴ Hg	7495	57(21)	73.3	170
²⁰⁴ Pb	8394	1.9(3)	1.53	3.0

Temperatur: T=2.5x10⁹ K

T. Rauscher und F.-K. Thielemann, ADNDT <u>75</u> (2000) 1

S. Goriely, priv. comm.

"Direkte" Messungen II: Bestimmung von (n,γ)-Reaktionsraten radioaktiver Kerne im s-Prozess

Untersuchung von "branching points" im s-Prozess

Die Verzweigung wird bestimmt durch:

- die Halbwertszeit von ⁹⁵Zr;
- die Neutronendichte und Temperatur im s-Prozess;
- den Neutronen-Einfangquerschnitt von ⁹⁵Zr.

Der (n,γ)-Wirkungsquerschnitt von ⁹⁵Zr: Vorhersagen für den MACS bei kT=30 keV

- J. Holmes et al., At. Data Nucl. Data Tables 18 (1976) 305: MACS (⁹⁵Zr) = 72 mb
- K. Toukan et al., Astrophys. J. 348 (1990) 357: MACS (⁹⁵Zr) = 50 mb
- T. Rauscher et al., At. Data Nucl. Data Tables 75 (2000) 1: MACS (⁹⁵Zr) = 126 mb
- S. Goriely, Nuclear Astrophysics Data Base (2002): MACS (⁹⁵Zr) = 23 mb

Untersuchung von "branching points" im s-Prozess

Gesucht ist die (n,γ)-Neutroneneinfangrate instabiler Kerne

→ Messung der (γ,n)-Photodissoziationsrate des Nachbarkerns + "detailed balance principle"

(n, γ)- vs. (γ ,n)-Reaktionsrate: Detailed balance

Untersuchung von "branching points" im s-Prozess

Der (n,γ)-Wirkungsquerschnitt von ⁹⁵Zr: Vorhersagen für den MACS bei kT=30 keV

- J. Holmes et al., At. Data Nucl. Data Tables 18 (1976) 305: MACS (⁹⁵Zr) = 72 mb
- K. Toukan et al., Astrophys. J. 348 (1990) 357: MACS (⁹⁵Zr) = 50 mb
- T. Rauscher et al., At. Data Nucl. Data Tables 75 (2000) 1: MACS (⁹⁵Zr) = 126 mb
- S. Goriely, Nuclear Astrophysics Data Base (2002): MACS (⁹⁵Zr) = 23 mb
 - Experiment (vorläufig): MACS (⁹⁵Zr) = 91(14) mb

K. Sonnabend et al., Astrophys. J. 583 (2003) 506 and to be published

Grenzen der direkten Experimente

• Überwiegend Messung integraler Reaktionsraten

→ Reaktionen mit monoenergetischen Photonen

Photonen-Tagger @ S-DALINAC

- "Clam Shell" Magnetdesign
- Szintillationskabel zur Detektierung der Elektronen
- Energieauflösung < 0.25 % für 8 MeV < E_{γ} < 16 MeV

Fokussiereigenschaften des Taggers

Grenzen der direkten Experimente

• Überwiegend Messung integraler Reaktionsraten

→ Reaktionen mit monoenergetischen Photonen

- Nur stabile Isotope können untersucht werden
 - → Coulomb-Dissoziation radioaktiver Strahlen, Extrapolation vom Stabilitätstal

Grenzen der direkten Experimente

- Überwiegend Messung integraler Reaktionsraten
 → Reaktionen mit monoenergetischen Photonen
- Nur stabile Isotope können untersucht werden
 - Coulomb-Dissoziation radioaktiver
 Strahlen, Extrapolation vom Stabilitätstal
- Thermische Anregung im Photonenbad
 - → Messung und <u>Verständnis</u> der kompletten Photoresponse des Kerns
- Zu viele Isotope im Reaktionsnetzwerk
 - → Zuverlässige Modellrechnungen basierend auf Untersuchungen der Kernstruktur

Messung der Photoresponse

Photoresponse eines Atomkerns

Experimentelle Methode: Photonenstreuung Kernresonanzfluoreszenz – (KRF)

Review: U. Kneissl, H.H. Pitz, and A.Z., Prog. Part. Nucl. Phys. 37 (1996) 349

Photonenstreuung mit Bremsstrahlung

Review: U. Kneissl, H.H. Pitz, and A.Z., Prog. Part. Nucl. Phys. 37 (1996) 349

Photonenstreuung an ¹³⁸Ba

A. Z. et al., Phys. Lett. B 542 (2002) 43

E1-Stärkeverteilung in N=82-Kernen

S. Volz et al., to be published

E1-Stärkeverteilung in Ca-Isotopen

T. Hartmann et al., PRL, 93 (2004) 192501 T. Hartmann et al., PRC 65 (2002) 034301 T. Hartmann et al., PRL 85 (2000) 274

Neutronen- und Protonenhaut-Anregungen

Oszillationen einer neutronen- oder protonenreichen Peripherie gegen den Restkern →isovektorielle E1-Anregungen "Pygmy Dipole Resonance (PDR)"

- "Soft Dipole Mode" in exotischen Kernen
- Bis zu 1% der EWSR in stabilen Kernen
- Energie um 8 MeV in stabilen Kernen

siehe z.B.: J. Chambers et al., Phys. Rev. C **50** (1994) R2671 P. van Isacker et al., Phys. Rev. C **45** (1992) R13

Summierte E1-Stärke in <u>N=82</u> nuclei

Quasiparticle-Phonon Model (QPM) für ¹³⁸Ba

V. Ponomarev, J. Wambach et al., to be published

Quasiparticle-Phonon Model (QPM) für ¹³⁸Ba

Die E1-Stärke bei 7 MeV ist überwiegend isoskalar.

V. Ponomarev, J. Wambach et al., to be published

Struktur der E1 Anregungen: Isoskalar oder isovektoriell ?

Dieser Aufbau erlaubt die Bestimmung des Isospin-Charakters gebundener Zustände.

D. Savran, H.J. Wörtche, M. Harakeh, K. Ramspeck, A. van den Berg, A.Z.

Total photopeak efficency: ~0.1% at 9 MeV

D. Savran, H.J. Wörtche, M. Harakeh, K. Ramspeck, A. van den Berg, A.Z.

D. Savran, H.J. Wörtche, M. Harakeh, K. Ramspeck, A. van den Berg, A.Z.

E1-Stärke nahe der Schwelle - Ausblick

- Systematische Stärkemessungen
 - [(γ , γ ') und (γ ,n) @ S-DALINAC]
- Isospin-Charakter

[($\alpha, \alpha' \gamma$) @ KVI]

Verzweigungsverhältnisse

[(γ, γ') @ HI γ S, Duke University, (p,p' γ) @ Tandem]

→ Verbesserte Modelle für E1-Stärke

→ Verbesserter Input für Netzwerkrechnungen

Nukleare Astrophysik mit Photonen

- "Direkte" Experimente zur Nukleosynthese
 - Photodissoziation im p-Prozess
 - Neutroneneinfang radioaktiver Kerne
- Grenzen der "direkten" Experimente
- Beispiele für indirekte Experimente
 - Messung der Photoresponse
 - Isospincharakter der E1-Anregungen

Nur umfassende <u>systematische</u> "direkte" und indirekte Studien können Erkenntnisse zur Nukleosynthese schwerer Atomkerne liefern

Nukleare Astrophysik mit Photonen

ELBE:

- Messungen der Photoresponse bis 20 MeV: (γ,γ') und Aktivierungsexperimente
- Ausnutzung des hohen Elektronenstroms
- Messung einzelner Paritäten

S-DALINAC:

- Messungen der Photoresponse bis 11 MeV: (γ,γ') und Aktivierungsexperimente
- Messungen mit dem Photonentagger bis 15 MeV

GSI:

• Photoresponse radioaktiver Kerne

HIγS@Duke, AIST Tsukuba, ...

Vom Atomkern zur Supernova -Die Synthese der Elemente in explosiven Szenarien

M. Babilon, W. Bayer, D. Galaviz^{*}, J. Hasper, A. Kretschmer, K. Lindenberg, S. Müller, D. Savran, K. Ramspeck, K. Sonnabend, S. Volz (Institut für Kernphysik, TU Darmstadt)

T. Rauscher (Basel), N. Tsoneva, H. Lenske (Gießen),
 H. Wörtche, A. van den Berg (Groningen),
 S. Kamerdzhiev, E. Litvinova (Obninsk)

Unterstützt durch die **DFG** (SFB 634 und Zi 510/2-2), das BMBF (06 DA 115) und den DAAD (247211).

Weitere Informationen: www.zilges.de

*now at MSU