1. Übungsblatt Struktur der Materie (Kernphysik)

Einfache Fragen

Frage 1:

Was versteht man unter dem Wirkungsquerschnitt einer Reaktion? Welche Größenordnung besitzt der Wirkungsquerschnitt für eine typische kernphysikalische Reaktion? Wie viele m^2 bzw. cm^2 sind ein barn bzw. ein mikrobarn μ b? Wofür wurde diese Einheit eingeführt?

Frage 2:

Was versteht man in der Kernphysik unter Isotopen, Isotonen und Isobaren?

Frage 3:

Beschreiben Sie kurz das Rutherford'sche Streuexperiment. Welche Eigenschaft von Atomen konnte aus diesem Experiment abgeleitet werden?

Frage 4:

Was beschreibt der Formfaktor F(q)? Wie lässt sich aus einer Messung des Formfaktors eines Atomkerns auf dessen Ladungsverteilung schließen?

Frage 5:

Wie sehen die Ladungsdichte $\rho(r)$ und der Formfaktor F(q) eines Positrons e^+ , eines ²⁷Alund eines ⁸¹Br-Atomkerns aus?

Übung

Aufgabe I:

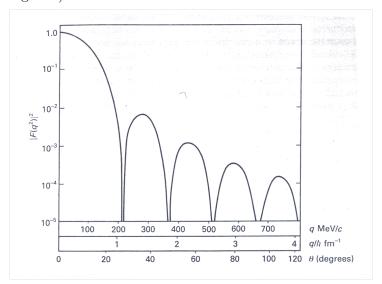
Um die Struktur von Atomkernen zu untersuchen, werden Teilchen meist auf sehr hohe Energien beschleunigt. Aktuelle Teilchenbeschleuniger liefern unter anderem folgende Energien:

- TANDEM-Beschleuniger (IKP Köln): Protonen mit 20 MeV
- CEBAF (Jefferson Lab): Elektronen mit 12 GeV
- LHC (Cern): Protonen mit 7 TeV

Wie groß ist die de Broglie-Wellenlänge der entsprechenden Teilchen? Welche Strukturen können Sie damit auflösen? Welche Wechselwirkungen sind dabei jeweils relevant?

Aufgabe II:

Jede Sekunde treffen ca. $6, 5 \cdot 10^{10} \frac{\text{Neutrinos}}{\text{cm}^2}$ auf die Erdoberfläche. Die Wechselwirkung von Neutrinos mit Materie ist äußerst schwach. Der Wirkungsquerschnitt liegt in der Größenordnung von 10^{-20} b. Schätzen Sie ab, wie dick ein Absorber aus Eisen ($\rho = 7874 \text{ kg/m}^3$)


mit einer Eintrittsfläche von 1 m² sein müsste, um die Intensität eines Neutrinostrahls um den Faktor 2 zu reduzieren.

Aufgabe III:

Mit welcher Energie muss ein ¹⁶O-Kern auf einen Silberkern (A=197) geschossen werden, damit sich beide Kerne berühren?

Aufgabe IV:

Bei einem Streuexperiment mit Elektronen der Energie $E_0 = 450$ MeV an einem Atomkern wurde der folgende Formfaktor $|F(q)|^2$ gemessen (aus W.S.C. Williams, Nuclear and Particle Physics, Fig. 3.3):

- (a) Bei welcher Art von Experimenten im Bereich der Optik werden ähnliche Streumuster beobachtet? Welche Gemeinsamkeiten gibt es dabei?
- (b) Wie groß ist der maximale Impulsübertrag des Elektrons auf den Kern?
- (c) Welche Energie E_0 müssen die einfallenden Elektronen mindestens besitzen, damit man das erste Minimum noch vermessen kann?
- (d) Der dargestellte Formfaktor hat die Form

$$F(q) = \frac{3(\sin x - x\cos x)}{x^3}$$

mit $x = qR/\hbar$. R ist ein Maß für die Größe des Streuzentrums. Schätzen Sie mithilfe der ersten Nullstelle von F(q) bei $x_0 = 4.493$ die Massenzahl des Targetkerns ab.

- (e) Skizzieren Sie die Ladungsverteilung des betreffenden Atomkerns.
- (f) Wie würde sich der gemessene Formfaktor qualitativ verändern, wenn anstatt des vermessenen Atomkerns (i) ein Isotop schwererer Masse, (ii) ein Isoton schwererer Masse, (iii) ein Isobar mit höherem Z vermessen wird?