Physics of Detectors - So Sc 2009

1. Interaction of radiation with matter

1.1 Heavy charged particles

• heavy = = m (proton) (m(p) ~ 338 MeV/ce)

• charged = + neutron (m(e) ~ 106 MeV/ce)

- main interaction: (or lomb with atomic electrons

- maximum energy transferred per collision

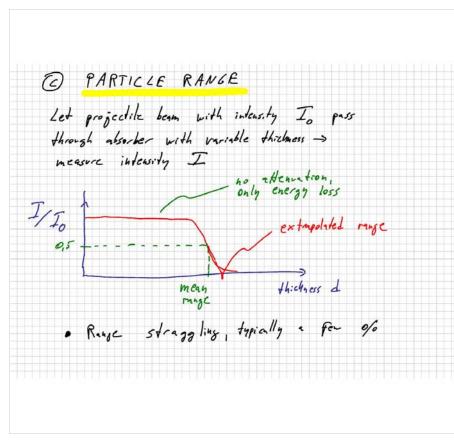
$$\Delta E = 4E \cdot m (target) / nucleon$$

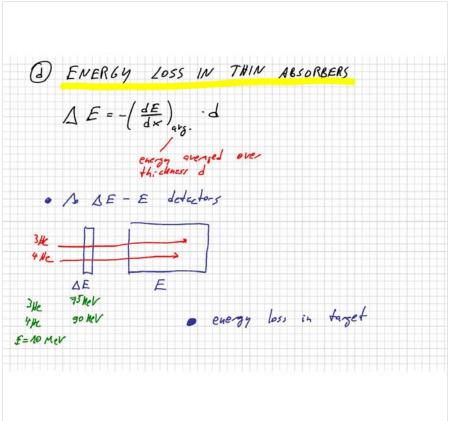
$$= \frac{1}{500} E(projectile)$$

N = number density of absorber electrons (fg)

A mainly $\frac{z^2}{v^2} \cdot N \cdot Z \sim \frac{z^2}{E} \cdot N \cdot Z$ Projectile energy

A large stopping power for

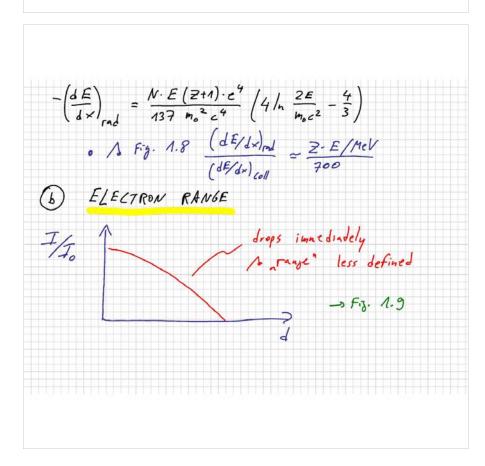

- small velocities

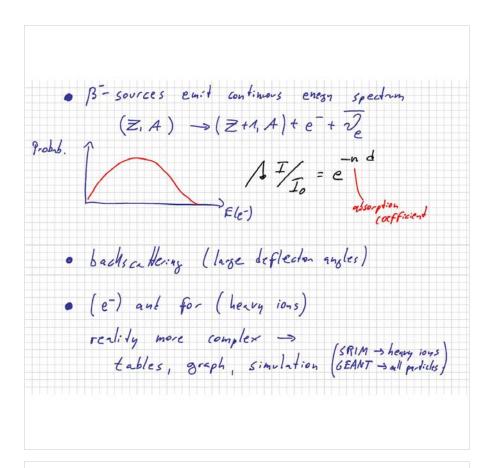

- large z of projectile

- large Z and density of absorber

Bethe formula fails at very low projectile energies (ion captures e and becomes neutral)

B BRA	66 CURVE
-SE/dx //E	" Bragg Per4"
	disdonce in absorber, d
• Energy	Straggling


1.2 Fast electrons


• fast ~ MeV

• m(projectile) = m (absorber electrons)

• large deviations from straight path possible

(a) STOPPING POWER $\left(\frac{dE}{dx}\right) = \left(\frac{dE}{dx}\right) + \left(\frac{dE}{dx}\right)$ - $\left(\frac{dE}{dx}\right) = \frac{2\pi e^4}{V^2 \cdot m_0} \cdot N \cdot Z \left(\ln \frac{m_0 v^2 \cdot E}{2T^2 (1-B^2)} - \ln \dots (B)\right)$ collisional losses

1.3 Gamma rays
1.3.1 PHOTOELECTRIC ABSORPTION
Gamma transfers energy to atomic electron
$E_{e^{-}} = E_{\chi} - E_{\delta}$
L Binding energy of ein shell (typically Nev
One ionized absorber atom remains A shell vacancy guidly filled A x-ray photons, Auger - electrons
A shell vacancy guidly filled
/ X-ray photens, Auger - electrons

Absorption probability per atom

Pals 2 2 3.5 n ~ 4-5

1.3.2 COMPTON SCATTERING 22.04.09

Ey

Ey

Ey

E

Tecoiling E

Conservation of linear momentum and energy
$$E'_{g} = \frac{E_{g}}{1 + \frac{E_{g}}{m_{o}c^{2}}} (1 - \cos N^{2})$$

$$Probability of Compton scattering in creases linearly with Z

Angular distribution of scattered g-rays:
$$Mlein-N: shina formula$$

$$\frac{d\sigma}{d\Omega} = Z \cdot r_{o}^{2} \left(\frac{1}{1 + d} \left(1 - \cos N^{2} \right) \right)^{2} \left(\frac{1 + \cos^{2}N^{2}}{2} \right) \left(1 + \frac{d^{2}(1 - \cos N^{2})^{2}}{(1 + \cos^{2}N^{2})^{2}} \right)$$

$$\frac{d\sigma}{d\Omega} = \frac{1}{2} \cdot r_{o}^{2} \left(\frac{1}{1 + d} \left(1 - \cos N^{2} \right) \right)^{2} \left(\frac{1 + \cos^{2}N^{2}}{2} \right) \left(\frac{1}{1 + \cos^{2}N^{2}} \right) \cdot \frac{1}{(1 + \cos^{2}N^{2})^{2}} \cdot \frac{1}{(1 + \cos^{2}N^{2})^$$$$

ete- 1 sombolity raises shaply with energy and scales ~ Z²

1.3.4 Attenuation of & rays

$$I_{I_0}$$
 I_{I_0}
 I_{I_0}
 I_{I_0}
 I_{I_0}
 I_{I_0}

M= M (Photoeffect) + M (Compten) + M (Pair)

(linear attenuation coefficient)

- MEAN FREE PATH (before interaction) $Z = 1/\mu$
- · MASS ATTENVATION COEFFICIENT

$$M_{miss} = M_g$$

$$I = I_0 \cdot e^{-(M/g) \cdot g \cdot d}$$
 $e-g \cdot mg/cm$

1.4 Nertions

Interaction with nuclei of absorber material via strong interaction to has to be in 10 m range

- @ elastic scattering A (n, in) A (mainly if En-MeV)
- B) inclustic scattering A (n, n) A* (late e.g. y-emission)
- (c) radiative capture A (n, y)B (usually 1/2-dependence plus resonances)

				•
(d)	other	reactions	(n,p), (n,d),	luid