Kern- und Teilchenphysik

Universität zu Köln, Wintersemester 2009/2010

Prof. Dr. Andreas Zilges/ Dr. J. Hasper/ C. Küppersbusch / V. Derya

Übungsblatt III

Einfache Fragen

Frage 1:

Wie bestimmt sich der Kernspin des Grundzustands von Atomkernen?

Frage 2:

Was versteht man unter der Parität eines Zustandes? Ist die Parität eine gute Quantenzahl für die Zustände eines Atomkerns? Was lässt sich hieraus über das statische Dipolmoment eines Atomkerns folgern?

Frage 3:

Wie hängt der Kernspin mit dem magnetischen Moment eines Atomkerns zusammen? Vergleichen Sie das nukleare magnetische Moment mit dem atomaren magnetischen Moment! Wie beeinflusst der Kernspin die atomaren Energieniveaus?

Frage 4:

Wie kann man den Kernspin / das magnetische Moment eines Atomkerns messen? Skizzieren Sie hierzu das Atomstrahlexperiment von Rabi!

Frage 5:

 $\overline{\text{Wie groß}}$ sind die g-Faktoren von Proton, Neutron und Elektron? Warum unterscheiden sich die g-Faktoren von Proton und Elektron?

Frage 6:

Nennen Sie verschiedene Arten von statischer Kerndeformation! Wie lässt sich die Deformation eines Atomkerns experimentell bestimmen?

Hausübungen

Aufgabe I: 8 Pkt

Werten Sie das folgende Molekülstrahl-Experiment nach Rabi aus. Es handelt sich um die original Daten aus I.I. Rabi et al., Phys. Rev. 53, 318 (1938), in dem ein Strahl aus Lithium-Chlorid verwendet wurde. Die experimentellen Daten und Parameter finden sich in folgender Abbildung:

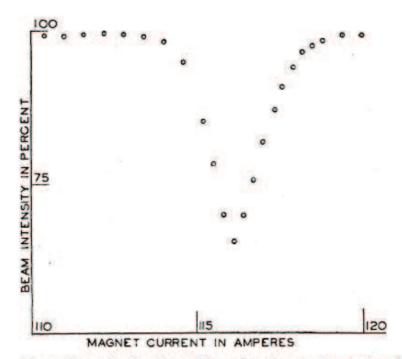


Fig. 1. Curve showing refocused beam intensity at various values of the homogeneous field. One ampere corresponds to about 18.4 gauss. The frequency of the oscillating field was held constant at 3.518 × 106 cycles per second.

Nehmen Sie an, dass Lithium zu 100% aus ⁷Li mit einem Kernspin von I = 3/2 besteht.

(a) Erklären Sie qualitativ das Messergebnis. Sieht man nur die in der Abbildung dargestellte Resonanzfrequenz?

(b) Berechnen Sie den g_I -Faktor und das magnetische Moment μ (in Einheiten des Kernmagnetons μ_K) für den Atomkern ⁷Li.

(c) Wieso verwendet Rabi in seinem Experiment einen LiCl-Strahl und nicht etwa einen ⁷Li-Atomstrahl oder einen ⁷Li-Ionenstrahl?

(d) Könnte man auch das Magnetfeld B festhalten und die Frequenz der eingestrahlten Hochfrequenz variieren, um g_I und μ zu bestimmen?

1 Pkt

(e) Wieso geht die Intensität im Minimum nicht auf 0 zurück?

Aufgabe II: 4 Pkt

In einem NMR-Experiment soll das magnetische Moment von 185 Re bestimmt werden. Hierzu werden die atomaren Energieniveaus in einem sehr starken äußeren Magnetfeld (B=1 T) aufgespalten und die Absorption eingestrahlter Hochfrequenzstrahlung wird vermessen. Wenn die Frequenz gerade der Aufspaltung zwischen den Hyperfeinstrukturzuständen entspricht, steigt die Absorption stark an (Resonanz).

- a) Das Experiment zeigt eine starke Resonanz bei einer Frequenz von 819 kHz. Leiten Sie aus diesem Ergebnis den g-Faktor für den Grundzustand des Kerns 185 Re ab!
- b) Die Hyperfeinstrukturzustände von 185 Re werden jeweils in 6 Unterniveaus aufgespalten. Was können Sie hieraus für den Kernspin folgern? Bestimmen Sie mit Hilfe des Ergebnisses aus Aufgabe a) außerdem das magnetische Moment von 185 Re in Einheiten des nuklearen Magnetons μ_K .

2 Pkt

Aufgabe III: 3 Pkt

Bei der NMR-Methode nutzt man die Aufspaltung der Energieniveaus nach der m-Quantenzahl in einem homogenen Magnetfeld. Berechnen Sie die relativen Besetzungszahlen der beiden Zustände für Protonen ohne Bahndrehimpuls J=1/2 bei einer Körpertemperatur von 36°C und einer Magnetfeldstärke von 1T. Wie sensitiv muss eine Messung sein, damit Sie mit Hilfe von NMR eine erhöhte Körpertemperatur von 41°C nachweisen können?

Gesamtpunktzahl: 15 Pkt