Kern- und Teilchenphysik Universität zu Köln, Sommersemester 2018 Prof. Dr. Andreas Zilges P. Scholz / F. Heim / M. Färber / M. Müscher / V. Vielmetter

Übungsblatt XI

Hinweise

• Ausgabe: 11.07.2018

• Besprechung: 18.07.2018

 Dieses Übungsblatt ist nicht zulassungs-, jedoch prüfungsrelevant! Die Aufgaben auf diesen Blatt sollen innerhalb der Übungsgruppen gelöst werden. Eine Abgabe ist nicht notwendig.

Einfache Fragen

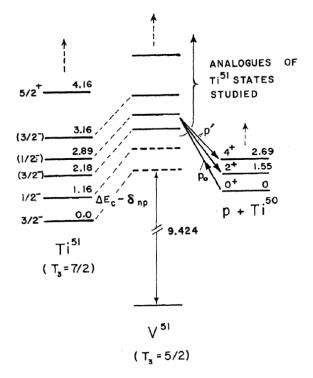
Bitte beachten Sie die auf Ilias zur Verfügung gestellten Quizfragen zu jedem Kapitel der Vorlesung. Diese sind prüfungsrelevant. Fragen zum Kernphysik-Quiz können innerhalb der Übungsgruppe besprochen werden.

Präsenzübung I: Dipolriesenresonanz

Die Dipolriesenresonanz (GDR) stellt man sich makroskopisch als gegenphasige Schwingung eines Protonen- und Neutronenfluids vor. In ¹⁹⁷Au liegt die Resonanzenergie der GDR bei $E_{GDR}=13.73$ MeV.

a) Berechnen Sie aus der Resonanzenergie die Schwingungsfrequenz ω der Anregung und leiten Sie hieraus die klassische Federkonstante D ab!

3 Pkt


b) Schätzen Sie mit Hilfe der Federkonstante den maximalen Abstand ab, den Protonen und Neutronen voneinander besitzen und vergleichen Sie dies mit der Größe von ¹⁹⁷Au! Was lernen Sie durch diesen Vergleich?

3 Pkt

Präsenzübung II: Isospinformalismus und Isobare-Analogresonanzen

In der Vorlesung haben Sie anhand des Beispiels 14 C/ 14 N/ 14 O das Konzept isobarer Analogzustände kennengelernt, d.h. gleicher Isospin und sehr ähnliche Wellenfunktion. Das T=1-Isospin-Triplett war ein Beispiel.

In dieser Aufgabe betrachten wir die inelastische Protonenstreuung an 50 Ti, d.h. die Reaktion 50 Ti(p,p'). Das schematische Konzept ist in Fig. 1 gezeigt. Während 51 V einen Grundzustandsisospin von T=5/2 hat, haben die Analogzustände einen Isospin von T=7/2, wie

Figure 1: Das Prinzip der Isobaren-Analogresonanz. Mit der (p,p')-Reaktion werden in ⁵¹V isobare Analogzustände von ⁵¹Ti bevölkert. In der Abbildung sind diese mit gestrichelten Linien verbunden. Entnommen E.R. Cosman et al., Phys. Rev. 182, 1131 (1969).

der Grundzustand von ⁵¹Ti. Im Vergleich zu ⁵⁰Ti handelt es sich bei den ersten angeregten Zuständen in ⁵¹Ti hauptsächlich um Ein- Teilchen-Anregungen, die auf der Grundzustandskonfiguration von ⁵⁰Ti aufbauen. Deswegen haben diese einen großen Überlapp mit Zuständen in ⁵⁰Ti. Dieses gilt auch für die Analogzustände in ⁵¹V!

a) Welchen Isospin T hat der Grundzustand von 50 Ti und welche Isospinkomponenten können Sie somit in 51 V mit einem Proton anregen?

3 Pkt

b) Nehmen Sie an, Sie haben den $J_p=1/2^-$ Analogzustand in 51 V bevölkert ($E_x=2.89$ MeV in 51 Ti, s. Fig. 1) und dieser könnte nun durch die Aussendung eines Protons stark in den ersten 2^+ -Zustand von 50 Ti zerfallen. Nennen Sie anhand dieser Information eine mögliche Struktur dieses Zustandes in 51 V und 51 Ti! Erwarten Sie Ihrer Interpretation folgend andere Zustände ähnlicher Struktur in 5150 Ti und 51 Ti?

7 Pkt

Präsenzübung III: Wechselwirkung von Hadronen - Erhaltungssätze

Welche Erhaltungsgrößen kennen Sie für die Wechselwirkung von Hadronen? Diskutieren Sie, ob folgende Reaktionen stattfinden können!

10 Pkt

a)
$$\pi^- + p \rightarrow K^- + \Sigma^+$$

b)
$$p + p \to K^{-} + \Sigma^{+} + n$$

(Hinweis: $K^- = \bar{u}s$; $K^+ = u\bar{s}$; $\Sigma^+ = uus$)