Name(n): Übungsgruppe:

Matrikelnummer(n):

Experimental physik I, WS 2016/17

Prof. Dr. A. Zilges, M.Sc. Mark Spieker, M.Sc. Simon Pickstone Institut für Kernphysik, Universität zu Köln

Vorlesungswebseite: www.ikp.uni-koeln.de/zilges/vorl/exp1/exp1.html

Übungsblatt 8

Aufgabe Nr.:	1	2	3	4	5	6	Summe
Punkte:							

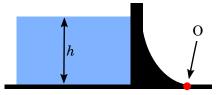
Ausgabe: Mittwoch, 14. Dezember 2016 in der Vorlesung und auf der Vorlesungswebseite

Abgabe: Mittwoch, 21. Dezember 2016 vor der Vorlesung

Besprechung: Montag, 09. Januar 2017 in den Übungen

Bitte nutzen Sie dieses Blatt als Deckblatt für Ihre Übung und heften Sie alles zusammen. Bitte geben Sie auch die oben genannten Informationen leserlich an!

1. [2 Punkte] Stein an Kraftmesser


Ein Stein hängt an einem Kraftmesser, der 10 N anzeigt. Jetzt wird der Stein in Wasser gehalten und der Kraftmesser zeigt 8 N an. Wie hoch ist die Dichte des Steins?

2. [3 Punkte] Loch im Wassertank

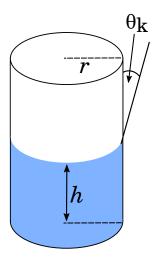
Ein Wassertank habe eine Höhe von 4 m. Es soll ein Loch derart in den Tank gebohrt werden, dass das Wasser möglichst weit herausspritzt. Bestimmen Sie, in welcher Höhe das Loch gebohrt werden muss!

3. [5 Punkte] Staudamm

Hinter der senkrechten Wand eines Staudammes stehe das Wasser auf einer Höhe h (s. Skizze). Die Breite des Dammes sei l (in die Zeichenebene hinein).

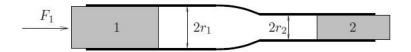
- a) Berechnen Sie die durch den Wasserdruck ausgeübte horizontale Kraft auf den Damm! (2 Punkte)
- b) Bestimmen Sie das resultierende Drehmoment τ um den Fuß O des Staudammes, welches aus der Kraft durch den Wasserdruck resultiert. (2 Punkte)
 - **Hinweis:** Betrachten Sie dazu einen Wasserstreifen in der Tiefe y. Der Hebelarm ist die Verbindungslinie vom Fuß O zu diesem Streifen an der Vorderfläche des Dammes. Integrieren Sie anschließend über die gesamte Wassertiefe h!
- c) Bestimmen Sie den effektiven Hebelarm, an dem die Gesamtkraft aus Teil a) angreift um das Drehmoment bezüglich der Linie durch den Punkt O zu erzeugen! (1 Punkt)

4. [3 Punkte] Kapillare


Die nebenstehende Skizze zeigt eine Kapillare mit Radius r, in der das Wasser bis auf eine Höhe h angestiegen ist.

a) Zeigen Sie, dass für die Steighöhe h des Wassers gilt:

$$h = \frac{2 \cdot \gamma \cdot \cos \theta_{\mathbf{k}}}{\rho \cdot r \cdot g}$$


Hier ist γ die Oberflächenspannung und ρ die Dichte des Wassers. (2 Punkte)

b) Wasser hat eine Oberflächenspannungskoeffizienten $\gamma = 0.073 \,\mathrm{N/m}$, der Kontaktwinkel $\theta_{\rm k}$ sei 10° und der Radius der Kapillare $r=1 \,\mathrm{mm}$. Bestimmen Sie, wie hoch das Wasser in der Kapillare steigt! (1 Punkt)

5. [7 Punkte] Wasserführendes Rohr

Betrachten Sie ein gerades wasserführendes Rohr, das sich vom Radius r_1 auf den Radius r_2 verengt und auf beiden Seiten mit beweglichen Kolben verschlossen ist (s. Abbildung). Auf den linken Kolben wird zusätzlich zum Atmosphärendruck p_0 die Kraft F_1 ausgeübt, auf den rechten Kolben wirkt von außen nur der Atmosphärendruck. Das System befinde sich in einem stationären Zustand. Betrachten Sie das Wasser als inkompressibel und reibungsfrei.

- a) Wie groß sind die Geschwindigkeiten v_1 und v_2 der beiden Kolben? (3 Punkte)
- b) Mit welcher Kraft F2 wird der rechte Kolben aus dem Rohr herausgedrückt? (1 Punkt)

Hinweis: Nehmen Sie an, dass es keinen Höhenunterschied zwischen Zufluss 1 und Abfluss 2 gibt.

Nehmen Sie nun an, dass Sie die beiden Kolben 1 und 2 entfernen. Das Wasser soll nun mit einer Geschwindigkeit von $v_2 = 30 \,\text{m/s}$ durch das horizontale Rohr in die Atmosphäre fließen. Weiterhin seien $2r_1 = 10 \,\text{cm}$ und $2r_2 = 6 \,\text{cm}$.

- c) Wie viel Wasser fließt innerhalb von 5 min nach draußen? (1 Punkt)
- d) Wie hoch ist die Fließgeschwindigkeit v_1 im linken Teil des Rohrs? (1 Punkt)
- e) Wie hoch ist der Druck p_2 im linken Teil des Rohrs? (1 Punkt)

Hinweis: Der Atmosphärendruck ist 1013 hPa.

6. [2 Bonuspunkte] Ein Stein im Boot

Sie sitzen in einem Boot, das in einem 5 m \times 5 m großen Bassin schwimmt. Bei Ihnen ist ein 30 kg schwerer Stein mit einer Dichte von $4\,\mathrm{g/cm^3}$. Nach einiger Zeit entscheiden Sie sich, den Stein ins Wasser zu werfen.

- a) Diskutieren sie zuerst qualitativ, ob der Wasserstand im Bassin steigt, sinkt oder gleich bleibt! (1 Punkt)
- b) Bestimmen Sie nun den Betrag, um den sich der Wasserstand tatsächlich ändert! (1 Punkt)

Erreichbare Gesamtpunktzahl: 20 + 2 Bonuspunkte